Betelgeuse: el último aliento de una estrella ~ Bloghemia Betelgeuse: el último aliento de una estrella

Betelgeuse: el último aliento de una estrella


Betelgeuse ha sido el centro de atención de los medios de comunicación últimamente. La supergigante roja se acerca al final de su vida, y cuando muere una estrella de más de 10 veces la masa del Sol, se apaga de manera espectacular. Con su brillo disminuyendo recientemente al punto más bajo en los últimos cien años, muchos entusiastas del espacio están entusiasmados de que Betelgeuse pronto se convierta en supernova, estallando de manera deslumbrante, y cuyo destello, que podría ser visible incluso a la luz del día.

Imagen: (NASA / ESA / Herschel / PACS) 


Si bien la famosa estrella en el hombro de Orión probablemente encontrará su desaparición en los próximos millones de años, prácticamente un par de días en el tiempo cósmico, los científicos sostienen que su oscurecimiento se debe a la pulsación de la estrella. El fenómeno es relativamente común entre las supergigantes rojas, y se sabe que Betelgeuse está en este grupo desde hace décadas.

Casualmente, los investigadores de la UC Santa Bárbara ya han hecho predicciones sobre el brillo de la supernova que se produciría cuando explotara una estrella pulsante como Betelgeuse.

El estudiante graduado de física Jared Goldberg ha publicado un estudio con Lars Bildsten, director del Instituto Kavli de Física Teórica (KITP) del campus y profesor de física de Gluck, Bill Paxton, que detalla cómo la pulsación de una estrella afectará la consiguiente explosión cuando lo haga. Llegar al final. El artículo aparece en el Astrophysical Journal .

"Queríamos saber cómo se vería si una estrella pulsante explotara en diferentes fases de pulsación", dijo Goldberg, investigador graduado de la National Science Foundation. "Los modelos anteriores son más simples porque no incluyen los efectos dependientes del tiempo de las pulsaciones".

Cuando una estrella del tamaño de Betelgeuse finalmente se queda sin material para fusionarse en su centro, pierde la presión externa que le impidió colapsar bajo su propio peso inmenso. El colapso del núcleo resultante ocurre en medio segundo, mucho más rápido de lo que toma la superficie de la estrella y las capas externas hinchadas para darse cuenta.

A medida que el núcleo de hierro colapsa, los átomos se disocian en electrones y protones. Estos se combinan para formar neutrones, y en el proceso liberan partículas de alta energía llamadas neutrinos. Normalmente, los neutrinos apenas interactúan con otras materias: 100 trillones de ellos pasan a través de su cuerpo cada segundo sin una sola colisión. Dicho esto, las supernovas se encuentran entre los fenómenos más poderosos del universo. Los números y las energías de los neutrinos producidos en el colapso del núcleo son tan inmensos que, aunque solo una pequeña fracción colisiona con el material estelar, generalmente es más que suficiente para lanzar una onda de choque capaz de explotar la estrella.

Esa explosión resultante golpea las capas externas de la estrella con una energía asombrosa, creando una explosión que puede eclipsar brevemente toda una galaxia. La explosión permanece brillante durante unos 100 días, ya que la radiación solo puede escapar una vez que el hidrógeno ionizado se recombina con los electrones perdidos para volverse neutro. Esto procede de afuera hacia adentro, lo que significa que los astrónomos ven más profundamente en la supernova a medida que pasa el tiempo hasta que finalmente la luz del centro puede escapar. En ese punto, todo lo que queda es el tenue resplandor de las consecuencias radiactivas, que pueden continuar brillando durante años.

Las características de una supernova varían con la masa de la estrella, la energía de explosión total y, lo que es más importante, su radio. Esto significa que la pulsación de Betelgeuse hace que la predicción de cómo explote sea bastante más complicada.

Los investigadores descubrieron que si toda la estrella pulsa al unísono, inhalando y exhalando, si se quiere, la supernova se comportará como si Betelgeuse fuera una estrella estática con un radio determinado. Sin embargo, las diferentes capas de la estrella pueden oscilar una frente a la otra: las capas externas se expanden mientras que las capas intermedias se contraen, y viceversa.

Para el caso de pulsación simple, el modelo del equipo arrojó resultados similares a los modelos que no tenían en cuenta la pulsación. "Simplemente parece una supernova de una estrella más grande o una estrella más pequeña en diferentes puntos de la pulsación", explicó Goldberg. "Es cuando comienzas a considerar las pulsaciones que son más complicadas, donde hay cosas que se mueven al mismo tiempo que las cosas que se mueven, entonces nuestro modelo realmente produce diferencias notables", dijo.

En estos casos, los investigadores descubrieron que a medida que la luz se escapa de las capas progresivamente más profundas de la explosión, las emisiones parecerían el resultado de supernovas de estrellas de diferentes tamaños.

"La luz de la parte de la estrella que está comprimida es más tenue", explicó Goldberg, "tal como esperaríamos de una estrella más compacta y no pulsante". Mientras tanto, la luz de las partes de la estrella que se estaban expandiendo en ese momento parecería más brillante, como si viniera de una estrella más grande y no pulsante.

Goldberg planea presentar un informe a Research Notes de la American Astronomical Society con Andy Howell, profesor de física, y el investigador postdoctoral de KITP Evan Bauer que resume los resultados de las simulaciones que realizaron específicamente en Betelgeuse. Goldberg también está trabajando con el postdoctorado KITP Benny Tsang para comparar diferentes técnicas de transferencia radiactiva para supernovas, y con el estudiante graduado de física Daichi Hiramatsu para comparar modelos de explosión teóricos con observaciones de supernovas.

Fuente y enlace de la investigación:

Jared A. Goldberg, Lars Bildsten, Bill Paxton. Alientos moribundos de una estrella masiva: supergigantes rojos pulsantes y sus supernovas de tipo IIP resultantes . The Astrophysical Journal , 2020

___________________

Te puede interesar: 

La reacción más fría hasta ahora
La señal de las primeras estrellas
La sinfonía de los agujeros negros
Carta de Albert Einstein sobre la religión
100 Curiosidades de la Ciencia
Estrella hiperrápida es expulsada por un agujero negro supermasivo en el centro de nuestra galaxia.
¿Adónde va la ciencia? por Max Planck (PDF)
Evolución de las Galaxias: el orden emerge del caos
Astrofísico descubre numerosos sistemas estelares con múltiples exoplanetas
El Voyager 2 llega al espacio interestelar
Cuando los dinosaurios surgieron, la tierra estaba al otro extremo de la galaxia.
Carl Sagan : Una vida en el Cosmos (PDF)
El Hubble observa el primer cometa interestelar confirmado
Los agujeros negros atrofian el crecimiento de las galaxias enanas
Detectan agua en un exoplaneta ubicado en la zona habitable de su estrella
¿Los agujeros negros están hechos de energía oscura?
A 50 años de una gigantesca hazaña
Stephen Hawking: Biografía, frases y artículos
Nuevas Tierras son descubiertas
A 100 años del eclipse, mas famoso de la Ciencia
Mujeres en la ciencia | Primera parte
30 Libros de Astronomía
Martin Bojowald | Antes del Big Bang
Giordano Bruno | Sobre el infinito Universo y los Mundos (PDF)
¿Burbuja en Expansión? Proponen un nuevo Modelo para el Universo
25 Fotografías increíbles de nuestro Universo
Artículo Anterior Artículo Siguiente