Este Programa especializado está dirigido a personas con interés en conocer más sobre los diversos desarrollos que han sido generados en décadas recientes en el área de inteligencia artificial. Al concluir este Programa compuesto de ocho cursos y un proyecto culminante, los estudiantes tendrán un amplio panorama y un dominio básico de las técnicas que se pueden usar para construir sistemas inteligentes. También se habrán discutido las implicaciones filosóficas, éticas y sociales que los desarrollos tecnológicos en inteligencia artificial podrían tener. La inteligencia artificial actualmente se aplica en una gran variedad de áreas y hay una alta demanda laboral en empresas y organizaciones de todo tipo, por lo que los estudiantes adquirirán diversas herramientas que podrán aplicar en su entorno profesional.
Contenido del Curso
En este curso cubriremos el pasado, presente y futuro de la inteligencia artificial. También mencionaremos los conceptos más importantes que serán útiles en el resto del programa especializado. Discutiremos las implicaciones sociales, éticas y filosóficas de los desarrollos en inteligencia artificial.
El razonamiento formal juega un papel importante en la inteligencia artificial. Hay dos maneras principales de formalizar razonamiento: una que enfatiza la deducción (lógica), y otra que enfatiza la incertidumbre (teoría de la probabilidad). En este curso vamos a cubrir una introducción tanto a la lógica (vamos a cubrir tres lógicas) como a la teoría de la probabilidad (vamos a cubrir tres modelos gráficos probabilísticos). Algunas tareas requieren programación básica en Python: El alumno deberá completar código al que se le ha eliminado una parte.
El curso trata de resolución automática de problemas por medio de algoritmos de búsqueda. Aprenderás a abstraer un problema como un grafo de estados-acciones y a dimensionar su complejidad por medio de la identificación de parámetros. Además, te mostraremos cómo analizar el consumo de recursos computacionales de los algoritmos para seleccionar o adaptar el más apropiado al problema. Nos interesa que puedas aplicar los algoritmos a problemas concretos. Te acompañaremos en la implementación de los algoritmos en el lenguaje de programación Python y te mostraremos algunos ejemplos de su aplicación a ciertos problemas modelo. Al final podrás probar tus algoritmos en un espacio de búsqueda interesante: el resolver el cubo de Rubik.
El aprendizaje de máquinas es una rama de la inteligencia artificial dedicada al estudio de métodos para dotar a los agentes artificiales de la capacidad de aprender a partir de ejemplos y/o experiencia. Los métodos de aprendizaje de máquinas pueden generar modelos de problemas complejos a través de instancias específicas, los cuales son capaces de generalizar y/o adaptarse a situaciones nuevas. Estos modelos han permitido llevar a cabo muchas nuevas aplicaciones en áreas muy diversas como generación de descripciones de imágenes, predicción de readmisión hospitalaria o detección de partículas subatómicas. En la actualizada frecuentemente interactuamos con modelos de aprendizaje de máquinas en diversas actividades de nuestra vida cotidiana. Por ejemplo, cuando utilizamos el teclado virtual en nuestros teléfonos móviles, un modelo de aprendizaje de máquinas trata de predecir la siguiente palabra que queremos escribir a partir de nuestro patrón de escritura y la de otros usuarios. De igual manera, al realizar una búsqueda en Internet, un modelo de aprendizaje de máquinas identifica los documentos más relevantes a ser mostrados de todos los posibles documentos usando nuestro historial de búsqueda. Al tomar una foto con nuestra cámara digital, un modelo de aprendizaje de máquinas detecta los rostros en la escena para poder enfocarlos de forma adecuada. Este es un curso básico introductorio al aprendizaje de máquinas con un enfoque práctico, el cual aborda tanto los fundamentos generales como métodos específicos y algunos aspectos prácticos. El curso aborda tanto el aprendizaje supervisado como el aprendizaje sin supervisión. Los métodos que se presentan en el curso son regresión lineal, regresión logística, redes neuronales y K-medias.
Charles Darwin, en su libro titulado “El Origen de las Especies” (Darwin, 1859) presentó evidencias relativas a dos aspectos importantes: la teoría de la evolución y los mecanismos de la evolución, conocido como selección natural. Sus investigaciones llegaron a la conclusión de que debido a que todo individuo es diferente a sus semejantes, algunos de ellos inevitablemente se adaptarán mejor y sobrevivirán bajo las condiciones del medio ambiente que los rodee que otros de ellos. En cada generación, una proporción de la población morirá antes de alcanzar la madurez, los individuos que mejor se adapten a su medio ambiente sobrevivirán, mientras que los menos aptos morirán. Más aún, si las características de adaptación son hereditarias, los sobrevivientes, quienes serán los progenitores en la siguiente generación, tenderán a transmitir sus características a sus descendientes. Por lo tanto, la generación siguiente presentará una mayor proporción de individuos mejor adaptados a su medio ambiente en comparación con la generación previa. Por tal motivo, el proceso de selección natural cambiará las características promedio de una especie, presentándose de este modo el proceso de evolución. La Computación Evolutiva (Evolutionary Computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas como son ingeniería, economía, química, medicina y porque no, las artes, por mencionar algunos campos de aplicación. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población. Algoritmos Evolutivos (AE), como también se le conoce al Cómputo Evolutivo (EC), se definen como métodos de optimización y búsqueda, los cuales están inspirados y tratan de imitar de manera parcial los procesos de la evolución natural, los cuales mantienen una población de estructuras que evolucionan de acuerdo a reglas de selección y otros operadores genéticos como son cruzamiento y mutación (Bäck, 1996). Los algoritmos evolutivos no son los únicos métodos de optimización propuestos a partir de sistemas biológicos. Se tienen una variedad de algoritmos de optimización que tratan de imitar el comportamiento de sistemas naturales como son las colonias de hormigas, algoritmos culturales y optimización por cúmulos de partículas entre otros. De aquí surge lo que se conoce como algoritmos bio-inspirados, ya que toman sus bases a partir de la estructura de procesos y sistemas biológicos: la evolución, la selección natural, comportamiento social de animales como son las hormigas, abejas, peces. BÄCK, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press. DARWIN, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray.
Los seres vivos han evolucionado en entornos cambiantes, por lo que han desarrollado mecanismos que les permiten exhibir comportamiento adaptativo. Usando el método sintético, podemos construir sistemas artificiales adaptativos que implementen dichos mecanismos, con lo cual también podemos incrementar nuestra comprensión de los sistemas naturales. En este curso veremos diversos conceptos que se han aplicado en la inteligencia artificial con orígenes en la biología y en la cibernética. Construyendo sobre ejemplos de sistemas vivos, revisaremos diversos algoritmos que permiten a los sistemas adaptarse y de esta manera enfrentar a la complejidad y cambios de su entorno. También cubriremos temas relacionados con la robustez, la cual complementa a la adaptación. Finalmente, veremos algunas aplicaciones de este tipo de inteligencia artificial. En el proyecto final, se desarrollará un sistema artificial que exhiba comportamiento adaptativo.
¿Qué es la creatividad?, ¿pueden ser creativas las computadoras? ¿cómo, cuándo y con qué objetivo surgió esta nueva área de investigación?, ¿Hasta donde hemos llegado en la creación de sistemas “creativos”?, y ¿qué teorías, metodologías y técnicas podemos usar para programar y evaluar este tipo de sistemas en generación de narrativas, música, descubrimiento científico, artes visuales, etc.? Estas y otras preguntas las analizaremos y discutiremos a lo largo de este curso. Así mismo, conforme avances en las lecciones, irás construyendo poco a poco tu propio agente artificial creativo.
Esta materia de corte teórico cierra el programa especializado Introducción a la Inteligencia Artificial. Las ciencias cognitivas estudian el conocimiento, por lo que abarca a una diversidad de disciplinas, tales como la psicología, neurofisiología, lingüística, filosofía y también la inteligencia artificial. Por una parte, las ciencias cognitivas pueden ayudarnos a construir sistemas que exhiban una inteligencia más sofisticada. Por otra parte, avances y experimentos en inteligencia artificial pueden ser útiles al resto de las ciencias cognitivas. En este curso cubriremos brevemente la historia y conceptos más relevantes de ciencias cognitivas, relacionándolos con temas cubiertos en el resto de la especialidad. El objetivo es que los estudiantes puedan desarrollar un discurso para expresar su opinión sobre la cognición en humanos, animales, otros seres vivos y máquinas.
En el proyecto culminante del programa especializado Introducción a la Inteligencia Artificial, los estudiantes aplicarán conceptos adquiridos durante el programa en un problema de su elección. El proyecto involucrará tanto el desarrollo de un programa de software o hardware como la escritura de un ensayo. Se extenderá por lo menos uno de los temas cubiertos en el programa especializado, realizando una implementación, comparándolo con otras técnicas y reportando los resultados en un ensayo. La evaluación será por pares. Los objetivos del proyecto son: * Aplicar el conocimiento adquirido durante el programa especializado a un dominio particular. * Implementar tecnología de IA con un propósito específico. * Comparar la solución desarrollada con existentes. * Reportar los resultados en un ensayo estructurado (máximo 10 páginas).
Institución: Universidad Nacional Autónoma de México
¿Te interesa el curso? ¿Que esperas para inscribirte?
INSCRIBIRSE EN EL CURSO
Contenido del Curso
1- Sesenta años de inteligencia artificial
En este curso cubriremos el pasado, presente y futuro de la inteligencia artificial. También mencionaremos los conceptos más importantes que serán útiles en el resto del programa especializado. Discutiremos las implicaciones sociales, éticas y filosóficas de los desarrollos en inteligencia artificial.
2- Razonamiento artificial
El razonamiento formal juega un papel importante en la inteligencia artificial. Hay dos maneras principales de formalizar razonamiento: una que enfatiza la deducción (lógica), y otra que enfatiza la incertidumbre (teoría de la probabilidad). En este curso vamos a cubrir una introducción tanto a la lógica (vamos a cubrir tres lógicas) como a la teoría de la probabilidad (vamos a cubrir tres modelos gráficos probabilísticos). Algunas tareas requieren programación básica en Python: El alumno deberá completar código al que se le ha eliminado una parte.
3- Resolución de problemas por búsqueda
El curso trata de resolución automática de problemas por medio de algoritmos de búsqueda. Aprenderás a abstraer un problema como un grafo de estados-acciones y a dimensionar su complejidad por medio de la identificación de parámetros. Además, te mostraremos cómo analizar el consumo de recursos computacionales de los algoritmos para seleccionar o adaptar el más apropiado al problema. Nos interesa que puedas aplicar los algoritmos a problemas concretos. Te acompañaremos en la implementación de los algoritmos en el lenguaje de programación Python y te mostraremos algunos ejemplos de su aplicación a ciertos problemas modelo. Al final podrás probar tus algoritmos en un espacio de búsqueda interesante: el resolver el cubo de Rubik.
4- Aprendizaje de máquinas
El aprendizaje de máquinas es una rama de la inteligencia artificial dedicada al estudio de métodos para dotar a los agentes artificiales de la capacidad de aprender a partir de ejemplos y/o experiencia. Los métodos de aprendizaje de máquinas pueden generar modelos de problemas complejos a través de instancias específicas, los cuales son capaces de generalizar y/o adaptarse a situaciones nuevas. Estos modelos han permitido llevar a cabo muchas nuevas aplicaciones en áreas muy diversas como generación de descripciones de imágenes, predicción de readmisión hospitalaria o detección de partículas subatómicas. En la actualizada frecuentemente interactuamos con modelos de aprendizaje de máquinas en diversas actividades de nuestra vida cotidiana. Por ejemplo, cuando utilizamos el teclado virtual en nuestros teléfonos móviles, un modelo de aprendizaje de máquinas trata de predecir la siguiente palabra que queremos escribir a partir de nuestro patrón de escritura y la de otros usuarios. De igual manera, al realizar una búsqueda en Internet, un modelo de aprendizaje de máquinas identifica los documentos más relevantes a ser mostrados de todos los posibles documentos usando nuestro historial de búsqueda. Al tomar una foto con nuestra cámara digital, un modelo de aprendizaje de máquinas detecta los rostros en la escena para poder enfocarlos de forma adecuada. Este es un curso básico introductorio al aprendizaje de máquinas con un enfoque práctico, el cual aborda tanto los fundamentos generales como métodos específicos y algunos aspectos prácticos. El curso aborda tanto el aprendizaje supervisado como el aprendizaje sin supervisión. Los métodos que se presentan en el curso son regresión lineal, regresión logística, redes neuronales y K-medias.
5- Cómputo evolutivo
Charles Darwin, en su libro titulado “El Origen de las Especies” (Darwin, 1859) presentó evidencias relativas a dos aspectos importantes: la teoría de la evolución y los mecanismos de la evolución, conocido como selección natural. Sus investigaciones llegaron a la conclusión de que debido a que todo individuo es diferente a sus semejantes, algunos de ellos inevitablemente se adaptarán mejor y sobrevivirán bajo las condiciones del medio ambiente que los rodee que otros de ellos. En cada generación, una proporción de la población morirá antes de alcanzar la madurez, los individuos que mejor se adapten a su medio ambiente sobrevivirán, mientras que los menos aptos morirán. Más aún, si las características de adaptación son hereditarias, los sobrevivientes, quienes serán los progenitores en la siguiente generación, tenderán a transmitir sus características a sus descendientes. Por lo tanto, la generación siguiente presentará una mayor proporción de individuos mejor adaptados a su medio ambiente en comparación con la generación previa. Por tal motivo, el proceso de selección natural cambiará las características promedio de una especie, presentándose de este modo el proceso de evolución. La Computación Evolutiva (Evolutionary Computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas como son ingeniería, economía, química, medicina y porque no, las artes, por mencionar algunos campos de aplicación. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población. Algoritmos Evolutivos (AE), como también se le conoce al Cómputo Evolutivo (EC), se definen como métodos de optimización y búsqueda, los cuales están inspirados y tratan de imitar de manera parcial los procesos de la evolución natural, los cuales mantienen una población de estructuras que evolucionan de acuerdo a reglas de selección y otros operadores genéticos como son cruzamiento y mutación (Bäck, 1996). Los algoritmos evolutivos no son los únicos métodos de optimización propuestos a partir de sistemas biológicos. Se tienen una variedad de algoritmos de optimización que tratan de imitar el comportamiento de sistemas naturales como son las colonias de hormigas, algoritmos culturales y optimización por cúmulos de partículas entre otros. De aquí surge lo que se conoce como algoritmos bio-inspirados, ya que toman sus bases a partir de la estructura de procesos y sistemas biológicos: la evolución, la selección natural, comportamiento social de animales como son las hormigas, abejas, peces. BÄCK, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press. DARWIN, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray.
6- Comportamiento adaptativo
Los seres vivos han evolucionado en entornos cambiantes, por lo que han desarrollado mecanismos que les permiten exhibir comportamiento adaptativo. Usando el método sintético, podemos construir sistemas artificiales adaptativos que implementen dichos mecanismos, con lo cual también podemos incrementar nuestra comprensión de los sistemas naturales. En este curso veremos diversos conceptos que se han aplicado en la inteligencia artificial con orígenes en la biología y en la cibernética. Construyendo sobre ejemplos de sistemas vivos, revisaremos diversos algoritmos que permiten a los sistemas adaptarse y de esta manera enfrentar a la complejidad y cambios de su entorno. También cubriremos temas relacionados con la robustez, la cual complementa a la adaptación. Finalmente, veremos algunas aplicaciones de este tipo de inteligencia artificial. En el proyecto final, se desarrollará un sistema artificial que exhiba comportamiento adaptativo.
7- Creatividad artificial
¿Qué es la creatividad?, ¿pueden ser creativas las computadoras? ¿cómo, cuándo y con qué objetivo surgió esta nueva área de investigación?, ¿Hasta donde hemos llegado en la creación de sistemas “creativos”?, y ¿qué teorías, metodologías y técnicas podemos usar para programar y evaluar este tipo de sistemas en generación de narrativas, música, descubrimiento científico, artes visuales, etc.? Estas y otras preguntas las analizaremos y discutiremos a lo largo de este curso. Así mismo, conforme avances en las lecciones, irás construyendo poco a poco tu propio agente artificial creativo.
8- Cognición encarnada
Esta materia de corte teórico cierra el programa especializado Introducción a la Inteligencia Artificial. Las ciencias cognitivas estudian el conocimiento, por lo que abarca a una diversidad de disciplinas, tales como la psicología, neurofisiología, lingüística, filosofía y también la inteligencia artificial. Por una parte, las ciencias cognitivas pueden ayudarnos a construir sistemas que exhiban una inteligencia más sofisticada. Por otra parte, avances y experimentos en inteligencia artificial pueden ser útiles al resto de las ciencias cognitivas. En este curso cubriremos brevemente la historia y conceptos más relevantes de ciencias cognitivas, relacionándolos con temas cubiertos en el resto de la especialidad. El objetivo es que los estudiantes puedan desarrollar un discurso para expresar su opinión sobre la cognición en humanos, animales, otros seres vivos y máquinas.
9- Inteligencia artificial: Proyecto final
En el proyecto culminante del programa especializado Introducción a la Inteligencia Artificial, los estudiantes aplicarán conceptos adquiridos durante el programa en un problema de su elección. El proyecto involucrará tanto el desarrollo de un programa de software o hardware como la escritura de un ensayo. Se extenderá por lo menos uno de los temas cubiertos en el programa especializado, realizando una implementación, comparándolo con otras técnicas y reportando los resultados en un ensayo. La evaluación será por pares. Los objetivos del proyecto son: * Aplicar el conocimiento adquirido durante el programa especializado a un dominio particular. * Implementar tecnología de IA con un propósito específico. * Comparar la solución desarrollada con existentes. * Reportar los resultados en un ensayo estructurado (máximo 10 páginas).
Institución: Universidad Nacional Autónoma de México
¿Te interesa el curso? ¿Que esperas para inscribirte?
INSCRIBIRSE EN EL CURSO